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This paper is an analysis of incompressible three-dimensional flows of electrically 
conducting fluids under the action of transverse magnetic fields which are as- 
sumed to be sufficiently strong that the interaction parameter N ( = M 2 / R )  B 1, 
where M is the Hartmann number and R is the Reynolds number. We also assume 
that R 9 1 and R, (magnetic Reynolds number) < 1, so that experimental 
verification of the theory may be possible. 

The main results are: (i) when a thick body is placed in a parallel-sided channel 
with non-conducting walls the flow over it is highly dependent on the conductivity 
of the body, in a surprising way. If the body is non-conducting, there is no flow 
within that cylinder which circumscribes the body and is parallel to the magnetic 
field: outside the cylinder the flow is plane and potential and enters or leaves the 
surface shear layer of this cylinder at  right angles. If the body is conducting, flow 
over it is possible and is of a different nature outside and inside the cylinder. 
(ii) When a non-conductingjat plate is placed in such a channel no blocking of the 
flow occurs. If the plate is elongated in the flow direction, the flow over it be- 
comes identical to that calculated by Hasimoto (1960) and, if elongated a t  right 
angles to the flow, becomes identical to that calculated by Dix (1963). 

Of particular interest in our analysis are the two types of layer which occur in 
these flows, the first being the Hartmann boundary layer, which is shown to have 
a controlling influence on the vorticity of the core flow in three-dimensional 
situations analogous to that of the Eckman layer in rotating-fluid flows. The 
second type, the free shear layer at  the circumscribing cylinder, is of interest 
because of its internal structure and effect on the external flow. 

1. Introduction 
In  the last few years, for the first time, some experiments have been performed 

on the effects of transverse magnetic fields on the flow of electrically conducting 
liquids over bodies of various shapes (e.g. Tsinober 1963). Although there has 
been much MHD theory on the flows over bodies in transverse fields, there has 
been little which can be tested in the laboratory, where the need is for a realistic 
theory of three-dimensional viscous flows confined by the walls of the ducts. 

Now at the Central Electricity Research Laboratories, Leatherhead, Surrey. 
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The existing theory of three-dimensional flows, where the magnetic Reynolds 
number R,, < 1 and the Reynolds number R 9 1, is inviscid and is only valid for 
unconfined flows; e.g. Ludford (1961) and Ludford & Singh (1963) have examined 
flow over various bodies when the interaction parameter N 9 1, and Reitz & 
Foldy (1961) examined the flow over a sphere when N < 1. On the other hand, for 
two-dimensional flows Hunt & Leibovich (1967) were able to consider the effects 
of viscosity and confining walls on flows over bodies, by assuming R, < 1, 

FIGURE 1. Various regions of the flow when an obstacle is placed in a duct. External and 
internal core flows (C,), (CJ, boundary layers (B) ,  and shear layer (S). 

N B 1, and R 3 1. The work presented here is, first, a generalization to three 
dimensions of the analysis of that earlier paper, and, secondly, a discussion of two 
subsidiary problems. 

The first is to examine some of the differences between the unconfined, in- 
viscid flows over bodies, as studied by Ludford and others, and the confined, 
viscous flows, attainable experimentally. 

The second is t o  clarify the physical implications of the results of those who 
have studied flow over a flat plate. If  Ox is in the flow direction and Oz perpendicu- 
lar to Ox and the magnetic field, Oy, Dix (1963) examined the flow over the plate 
y = 0, x > 0 such that = 0 and found that the velocity outside the Hartmann 
boundary layer is that of the stream at infinity, u,. On the other hand Hasimoto 
(1960) examined the flow over a plate y = 0, 1x1 < const. such that ajax = 0 and 
found that, as a result of the ‘wakes’ which stem from the edges of the plate, the 
velocity is &urn above the Hartmann boundary layer. In  5 5 we examine the flow 
over a plate finite in the Ox and Oz directions and find that, as the plate’s shape 
is changed, our solutions for the two extreme cases agree with the results of Dix 
and Hasimoto. 
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The methods used in this paper are similar to those of Hunt & Leibovich (1967), 
namely that the flow may be analysed in certain separate regions: the core, the 
boundary layers and the shear layers (see figure 1). The solutions for these various 
regions match each other and are consistent with the original assumptions. The 
novel feature of our analysis is the lack of determinacy in the zeroth-order solu- 
tion (in the sense of Hunt & Leibovich), which only occurs in three-dimensional 
problems and can only be resolved by considering higher-order terms in the 
asymptotic expansions. 

In  $ 2 after studying the non-dimensional form of the equations and the general 
form of the solution for the core, we consider three-dimensional Hartmann 
boundary layers. A new jump condition is derived, which is of decisive import- 
ance in analysing three-dimensional flows, in that it determines the inviscid 
core flows. 

In  $ 3 we write down the solution for flow between two surfaces a t  y = Fu(u(x, z )  
and y = Fl(x, x ) ,  and in $ 4  we use these results to examine the flow over a sym- 
metric body placed in a parallel-sided duct. The salient result is that there is no 
flow over the body, when it is non-conducting, but there may be if it is conducting. 
We examine the shear layers in some detail and find that they determine the 
external flow. In  $ 6 we discuss these flows and those of $ 5 in terms of the differ- 
ences between two- and three-dimensional situations; we also discuss the inter- 
esting analogies, both physical and mathematical, with non-conducting flows in 
a' rotating environment. 

2. Formulation of the problem 
2.1. Non-dimensional M H D  equations 

The equations governing the steady flow of an electrically conducting fluid with 
uniform properties under the action of a transverse magnetic field, B,, may, 
when R,n < 1, be written (Shercliff 1965): 

(2.1) 

v.v* = 0, (2.2) 

(2.3) 

V xE* = 0, (2.4) 

V.j* = 0, (2.5) 

p(v*.V)v* = -Vp*+j* x B o + ~ V 2 v * ,  

j* = a(E* + v* x Bo), 

where v*, p*, j* and E* are velocity, pressure, electric current and electric field 
respectively, and p, CT and 7 are density, conductivity and viscosity respectively. 

If we now non-dimensionalize the variables in terms of the fluid properties, a 
characteristic velocity U,, and length d (typically the mean velocity in a duct and 
the duct width at  some point), as follows: 
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then equations (2.1-2.5) become 
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(v. V) v = - V p  + N ( j  x 9)  + R-lVZv, (3.6) 

v . v  = 0, (3.7) 

j = E + v x ? ,  (2.8) 

V X E  = 0, (2.9) 

V .  j = 0. (2.10) 

Here N = aBgd/pU,, R = pU,d/r,  and 4 is the unit vector in the direction of B, 
(see figure 1); the operator V is now taken with respect to the non-dimensional 
variables x, y, z. For subsequent use we define M = B,d(a/q)B = (NR)B. 

From equations (2.7)-(2.9)) by elminating E, we obtain the familiar ‘magnetic 
induction ’ equation 

Equations (2.6), (2.7) and (2.10)) (2.11) are the governing equations forp ,  v, and 

We next consider the basic form of the solutions in the core regions (C) and 

(2.11) V x j = av/ay. 

j .  

the boundary layers (B) .  

2.2. Core regions (G) 

If in C we assume that ajax, a/ay, a/& are O(l) ,  then as N - t m  and R+m,  
equation (2.6) becomes 

It immediately follows that 

and also that, if we take the curl, 

From (2.11) we now find 

O =  -V(p /N)+ jx$ .  (2.12) 

a(PlN)laY = 0 (3.13) 

aj/ay = 0. (2.11) 

a2vpy2 = 0. (3.15) 

Equations (2.11) and (2.15) are fundamental results for large-N flows, as 

avpy = 0 (2.16) 

in the limit of small Rossby number and large Reynolds number. It will become 
apparent later that the similarities in the flows over bodies in these two situations 
are quite marked. The paradoxical result of (2.13) that, as N-tm,  the electro- 
magnetic j x B force becomes irrotational was discussed by Hunt & Leibovich 
(1967). 

We can now deduce the general form of the core solution by substituting the 
general solutions of equations (2.13)-(2.15) into (2.7,) (2.10)-(2.12). We find 

important as the Taylor-Proudman theorem in rotating flows, where 

p = Nh, (2.17) 

(2.18) 

t L  = y ( a ~ j a z )  - ahlax - a$/az, 

U’ = y( - ay‘jax) - ahlax + a+/ax, 

= y(a2h/aX2 + 82h/az2) + g ,  
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j ,  = ahlax, j u = -ir, j ,  = -ahlax, (2.19) 

where h, 'Y, $ and g are unknown functions of x and z only. To calculate these 
variables we have to know the boundary conditions on the walls and the up- 
stream and downstream conditions. 

2.3. Boundary layers (B) 
In this section we consider the boundary layers on walls where B, . n + 0, n being 
the unit normal out of the wall. If we choose axes O'nst and if we define the angle 
CL to be that between O'n and Oy, then it is well known that to zeroth order in the 
boundary layer, as R, N -+ 00, the curl of (2.6) impliest 

0 = - N cos CL aj,/an + R-I a3vy/an3, 

0 = N cos a aj,Jan + R-I ii3v,/an3, 
(2.20) 

2 

FIGURE 2. Notation for boundary-layer analysis in 8 2. 

and the induction equation (2.11) implies 

0 = - cos aav,/iin + aj,/an, 

0 = cosaav,/iin+aj,/an. ~ 

If we apply the boundary condition 

v = O  at n = O  

(2.21) 

and denote the core values of v and j at the wall by the suffix co, then the basic 
solution is 

(2.22) e) = e ~ )  [I - exp ( - Mn cosa)], 

and (2) = (!'a) + ( ) cosaexp(-Mncosa). 
J t m  - v,, 

(2.23) 

Equations (2.22) and (2.7) enable us to deduce 

vnm = (Mcosa)-l(av,,/as+ av,,/at) (2.24) 

from the condition vn = 0 at  n = 0. 

t In  (2.20) and (2.21) we have ignored the equations governing (1, and j ,  as the variation 
of these two variables in the layer is of little interest. 
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So far the electrical properties of the wall have not entered. At the solid-fluid 
interface the tangential component of electric field and the normal component of 
current are continuous (Shercliff 1965). In  an insulator there is no current, so that 

j, = 0 at n =  0. (2.25) 

In a perfect conductor at rest there is no electric field, so that 

j, = j l  = 0 at  n = 0,  (2.26) 

according to equation (2.8), since v = 0 there. 
The condition 

j,, = N-l(av,,/at - avlt,/as) at a non-conducting wall (2.27) 

now follows from equations (2.23), (2.25) and V .  j = 0. The condition 

( 31, V s a  
= ( -‘lrn) cosa a t  a perfectly conducting wall (2.28) 

follows from equations (2.23), (2.26). These two boundary conditions on an in- 
viscid core flow have not been stated before: they are vital to an understanding 
of three-dimensional MHD flows. The condition (2.27) may be viewed as a 
generalization to three dimensions of Shercliff’s (1956) result for curved walls 
of ducts of constant cross-section. He showed how the Hartmann boundary 
layer provides a relation between the current entering or leaving it and the 
velocity outside. It is also a corollary to Stewartson’s (1960) relation between the 
vorticity and current content of two-dimensional layers, in describing how the 
current and vortex lines enter or leave a developing layer. The new idea is that 
this controls the flow outside. (Equation (2.27) plays the same role as that govern- 
ing flow into an Ekman layer in rotating fluids.) 

3. On the general solution for flow between two non-conducting surfaces 
We now use our core-flow solution and boundary-layer matching conditions 

to examine the flow between two non-conducting surfaces 

y = Fu(x,z) and y = q ( x , z ) ,  

for example, flow in a duct or flow over a body placed in a duct. 

flow solution must satisfy the condition 
It follows from the boundary condition on vnm, (2.24), that the zero-order core- 

v,, = 0. (3.1) 
Using our solution (2.18) we conclude that on y = F ,  where .F = .Fz, 4, 

To calculate the zero-order current density we note that as M-tco, (2.27) 
becomes 

j,,, = 0, 

whence 
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when F = F,, 4. Subtracting the two equations in (3.4) we obtain, in general, 

h = H ( D ) ,  D(x,  Z )  = F, - 4, (3.5) 

where H is an arbitrary function, and then 

Once H is known, (3.2) gives equations for 4 and g, in general. 
Two interesting special cases illustrate the general solution (3.5), (3.6). If the 

duct is symmetric, 1p1= -&, or one wall is perpendicular to B,, F, = Fz = 0, 
then 

It can happen that a t  some section of such a duct the flow is completely current- 
free, so that H = 0 in the region filled by lines of constant D passing through the 
section. (This is the case for a constant-area duct, where the current density is 
of order M-l.) Then the solution of equations (3.2) is 

Y = 0, i.e.ju = au/ay = atu/ay = 0. (3.7) 

g =  0, + = S ( D ) .  (3.8) 

Only u = -a@/az and w = a$/ax are non-zero; and the. flow follows lines of 
constant separation D in the (x, 2)-plane. 

It would seem that the calculation of the velocity distribution in such a duct 
(taking into account the Hartmann layers) is a trivial matter if H can be proved 
zero. However, an examination of the case of a symmetric duct changing from 
constant to variable area (however gradually) shows that the problem is sur- 
prisingly difficult. Singularities appear in the solution (3.8), signalling a compli- 
cated type of layer involving both inertial and viscous terms. 

We shall return to this question in a later paper: here we restrict our attention 
to the flow past bodies in parallel-sided ducts. 

4. Flow past a thick body in a parallel-sided duct 
Consider the flow past a symmetric body, with surfaces y = f f(x, z) ,  placed 

in a parallel-sided duct with non-conducting walls at  y = ~f: 1.7 The term thick, 
as is shown in $6, implies that the y-dimension of the body is O(1) and that the 
5- and z-dimensions are small compared to N .  

The core region is divided into two by the cylinder circumscribing the body with 
generators parallel to B, (see figure 1) .  First, we treat the interior Ci and the ex- 
terior C,; then the interface layer S between them. 

4.1. Core region C, 

Consider the general solution (2.17)-(2.19). Unlike the general case discussed in 
$ 3, the two conditions (3.4) are not fully effective but lead to  the single conclusion 

Y = 0, i.e.jv = au/ay = aw/ay = 0. (4.1) 

7 The analysis is easily extended to non-symmetric bodies and to the effects of non- 
conducting boundaries a t  z = & b(z).  
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Likewise, the conditions (3.2) are not equations for @ and g but give 
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h itself may be calculated if sufficient information is given about it at  large 
distances and on S. But 11. is left undetermined: the zero-order core equations 
do not determine the flow uniquely.? Indeed, we shall find that the Hartmann 
layers control the core flow through the condition (2.27). 

As a consequence we have to consider v and j as being the leading terms, 
v,, and j,, in an asymptotic expansion, which we tentatively write 

(4.3) 

v = v,, + (N-lv,, + N - 2 ~ 2 1 v  + . . . + N-V,,)  + M - ~ v ,  + . . . 
j = j, + (N-lj1, + N-2j2N + . . . + N-7j,N) + M-ljU1 + . . . , 

p / N  5 P O  + (AT-lp1N + N-2p21v + . . . + N-'p,N) + MplpL%l + . . . . 
Note that vo = (u,,(x, 4 , 0 ,  u+,(x, z)) ,  j, = ( jzo(x,  4, O,jz,,(x, 4) and p,, = p,(x, 2). 

The series expansion in terms of N-l appears to be the only one which can be 
constructed in the core where the viscous terms are ignored, as was previously 
noted by Hunt & Leibovich (1967). The reason we insert the term M - ~ V ~  is 
because the boundary conditions are functions of M .  Clearly if the series were t o  
be expanded further, we would have to include mixed terms, such as M-lN-rvuTlr,, 
and higher-order terms in M-l. When N-7 > M-l ( r  2 1) each term in the ex- 
pansion (4.3) is larger than the one to its right, but when M-l > N-l the expan- 
sion should be rewritten 

v = v, + M-lv,, + N-lv,, + M-lN-l~lnf lN + . . . , etc. 

(Note that, since we assume R $ 1, M-2 < N-l . )  
If we neglect terms 0(JP2) in these expansions then, since the ratio of the 

viscous terms, R-IV~V, to the zero-order electromagnetic term N(j  x 9)  in 
equation (2.6) is O(M-2), we can ignore the former. Thus, the governing equations 
for the core flow become 

(V.V)V = - V p + N ( j  x $1, (4.4) 

along with (2.7), (2.10), (2.11). 
The boundary conditions for the terms we are most interested in, namely those 

not containing mixed coefficients in N and N ,  are, in our boundary-layer nota- 
tion, 

and 

where r b 0. 

t A similar difficulty arises in Ludford's (1961) paper. There it was settled by assuming a 
charge-relaxation time large compared to transit time of a fluid particle passing the body, 
whence V .E  = 0; which though mathematically acceptable is physically unrealistic. On 
the other hand, Ludford & Singh (1963) established a unique flow by considering its 
development in time. 
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If we now take the first-order term in the expansion (4.3)) the curl of (4.4) 
shows that j,, satisfies 

Then applying the boundary condition (4.6) to jVl ,  (which is seen to be linear in y) 
we find that 

(4.8) j?llfl = 0; 

hence ( V , . V )  (z 2-53 ax) = 0. (4.9) 

This is the equation of plane rotational flow, and one might conclude that v,, 
is determined once the upstream vorticity is specified. (No further restrictions 
arise from higher-order terms.) 

The inference that upstream vorticity can be prescribed is wrong, however. 
If  M-l-terms are considered, we find? 

aj,,lay = 0, (4.10) 

so that the boundary condition (4.6)) applied a t  y = & 1, gives 

(4.11) 

For flow between parallel walls the Hartmann layers will not accept vorticity; 
and thus they control the core flow. 

Once the upstream conditions are given, in conformity with (4.11), and appro- 
priate matching conditions are provided on S, the flow everywhere in C, is 

(4.12) 
determined by solving 

-++- = 0 

where uo = -a$ ' /az and wo = a$'/ax (4.13) 

($' is $ plus the harmonic conjugate of h). 

aZ$-l  az@l  

ax2 az2 

4.2. Core region Ci 
Here the flow passes between boundaries whose separation varies, namely the 
walls at  y = i 1 and the body at  y = f(x, 2) .  Despite this difference between 
C, and Ci, we still need to consider higher-order terms. 

Consider first a non-conducting body and take y > 0. The boundary conditions 
(3.4) do not degenerate, as they did inCe, and thegeneralresults (3.5)) (3.6) apply. 
With 4' = 1 these read 

h = H(1-f )  = g(f) and Y = 0, (4.14) 

so that u,, = - Pfr - apjax, wo = - Pfi + a$/ax. (4.15) 

Before g and q9 can be found from the conditions (3.2) we must determine B. 
F const. is acceptable: any other choice gives 

circulating currents in Ci accompanied by non-zero total mass flux across them. 

-f As in equation (2.14), since viscous and inertial terms still do not intrude. 

It will now be shown that only 
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(If the body were symmetric about z = 0 these would be ruled out immediately.) 
When a varies with f the current lines f = const. are closed contour lines C on 
the body;t and 

Q = (1 -f) (u,dz-u?,dr) 
f c  

is the total flow out of the right cylinder with C as base. When the formulas 
(4.15) are inserted, Y’ integrates out and we are left with 

Q = (1-f)B’f (f,dx-fxdz). 

Since C is a line of constant f ,  this integral is that of lgrad f I around C and hence 
is non-zero. Any variable H would therefore give non-zero Q ,  which is unaccept- 

able. Thus j, = 0. (4.16) 

C 

With h constant the boundary conditions (3.2) give 

g = 0, $ = W(f)  (Barbitrary), 

vo = 0 as in (3.8); so that 

(4.17) 

(4.18) 

and the streamlines are parallel to the contours C. 
We are left with an undetermined circulatory flow; which makes us expect 

u g  = = 0. (4.19) 

Certainly this must be the case if the body is symmetric about z = 0. Proof for il 
general body depends on the controlling action of the Hartmann layers. (Once 
again the N-r-terms fail us. Sincej,,,, jZl, can be related to inertial terms in uo, Z C ? ~  

it might be thought that the condition of zero current flux through the cylinder 
on C would lead to s = const. But, surprisingly enough, the condition is satisfied 
for all 8.1 

According to equation (4.10) j,, is a function of x, x only. The boundary con- 
dition (4.6), applied on y = 1 and y = f ,  shows that it satisfies 

3 U l U  - 

> (4.20) 

From this we may prove S = const. as follows. 
The left-hand side is - a(fj,,,)/ax - a(fj,,,)/az since ajXl,/8x + 8jslM/8z = 0. Its 

integral over the interior of C is therefore zero if there is to be no total current 
flux through the cylinder on C. The right-hand side then gives 

P P 

$c(u,dx+w,dz) = - s’ 
$c 

(f,dx-f,dx) = 0, 

i.e. S = const. 

more involved argument is then required, which, for simplicity, we omit here. 
t For a non-symmetric body the lines of‘ constant f on its top side may not be closed. A 
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Thus equations (4.16)-(4.19) hold in Ci. In fact, j,, = vlJ1 = 0 also. 
When the body is highly conducting, but the walls remain non-conducting, the 

Y = 0,  @ = const. (4.21) 

(The latter is most easily obtained by remembering that, when Y is zero, @ is 
the electric potential.) Both conditions (3.3) apply, and yield 

condition (3.3) at y = f must be replaced by ( 2 . 2 8 )  there. We find 

(4.23) 
a2h Ph 

Note that there is, in general, flow over such a body, given by 

uo = jzo = - ahlax, uJo = -j,O = - ah/&. (4.23) 

The vortex lines are horizontal: au,/az - aw,/ax = 0. Although the analysis to 
be presented next is adequate in principle to deal with the shear layer surround- 
ing a perfectly conducting body for arbitrary current density in C, (unlike the 
non-conducting body as it will turn out), attention will be focused on the simplest 
case in which the zero-order current density in C, is zero, so that h = 0. Ci is then 
stagnant and current free. 

4.3. Shear layer S (non-conducting body) 

Since there is no flow within Ci and the velocity distribution in C, is that of a two- 
dimensional potential flow, it is not possible for the velocity in C, to match that 
in Ci without singular velocity gradients occurring. Therefore, either viscous or 
inertial terms or both must become as large as the terms retained in the momen- 
tum equations, with the consequence that the core flow approximations become 
invalid. In  this section we postulate the existence of a shear layer S lying between 
C, and Ci, such that the flow is rendered continuous between these two regions; 
and by making certain assumptions we find that such a shear layer may be 
constructed. For the analysis of the layer we take a set of co-ordinate axes 
(&7, c) such that the 7-axis is parallel to the y-axis, the 6-axis is normal to the 
circumscribing cylinder, and 6 = 0, 7 = 0 where the body touches this cylinder, 
The velocities in this set of axes are (U, V ,  W) (see figure 3). 

From the solutions in C, and Ci we know that 

(4.24) 

where the suffices e and i refer to the values of variables on the outer and inner 
sides of S. We do not know the values of iie and We from the solution in C,, but we 

- 
t?, = 0, vi = ji = 0 

can state, by hypothesis, 
Zc, = 0(1) ,  We = O(1). 

If we consider the thickness of S to be S (  < 1) and write [ = XS,  then it follows 

(4.25) 
from continuity that u = 0(1), w = o(s-lj in S. 

To calculate W take the curl of (2.6). By ignoring higher-order terms in 6 we 
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Differentiating with respect to 9 and using (2.14) we have 
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(4.27) 

There are two possibilities. Balancing the inertial and electromagnetic terms, 
as was done by Hunt & Leibovich (1967), requires Na3 = 1 and R6 $ 1,  or 
M* < R, but leads to the non-linear equation 

(4.28) 

FIGURE 3. Notation for the shear-layer analysis in 54. The body, 
as assumed in 94, is symmetric. 

which we have not been able to solve. On the other hand, a viscous electro- 
magnetic balance, i.e. M264 = 1 and R6 < 1, leads to the fourth-order linear 
equation 

(4.29) 

The shear layer in this case has %ickness 

6 = M-t  (4.30) 
in contrast to N-6 in the other. 

There are two disadvantages to confining ourselves to this simpler equation, 
the first being that it requires the magnetic field to be sufficiently large for 
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MB 9 R, a condition difficult to attain experimentally and yet have R sufficiently 
large for measurements of velocity, etc., to be made. The second and less serious 
disadvantage is that 

j, = O(M-l ) ,  (4.31) 
as will now be shown. 

Supposejc, is O(1); then, sincejci = 0, V must be O(S-l) in the layer according 
to the induction equation (2.11). If the flow is to follow the body U = O(S-1) also, 
and then continuity requires W = O(S-2). Thus, whatever the value of M ,  the 
inertial terms are large compared to the viscous terms, and we have to treat the 
full non-linear equation (4.28). jte = O(1) leads to a similar conclusion. 

The restriction (4.31) to an inertialess shear layer 8 is not, however, serious 
since experiments are usually made with non-conducting side walls, so that far 
upstream and downstream j ,  = O(M-l) exactly. 

Note that the argument only applies when ji is required to be zero. For the 
highly conducting body and the flat plate considered later the inertialess shear 
layer is entirely appropriate. Then the conclusion is that j must be continuous 
across the layer; this is the condition which cannot be satisfied for the non- 
conducting body when currents are being driven through C,. 

Now we can formulate our problem precisely. v and j are expanded in asymp- 
totic series in M-3, their forms being justified by consistency. 

u = u,+M-*ul+ ..., 
0 = &lbO+F1+ ..., 
UJ = M*i6,+Gl+ ...; 

j t  = M-ijt, + M-3tl + . . . , 
j ,  = , jvo  + M-&jT,l + . . . , 
j ,  = jCo + M-$js, + . . . . 

Then equations (2.6), (2.11) give 

(4.32) 

(4.33) 

(84/8X* - 82/aq2) (@,, al, TJ0,  Z1) = 0. (4.34) 

Having determined Go, El, a,,, F l ,  we may calculate U,, C1 from (2.7);j7,,,  j71,j,o,jcl 
from (2.11); and thenjtO,jtl from (2.10). 

Now consider the boundary conditions at 7 = 1 and 7 = f(5, c), where Hart- 
mann-type boundary layers [regions (2u) and ( % ) ]  occur within the shear layers 
S. In these Iayers, since a/& = O(M)  still dominates alas, aj8t = O ( M t ) ,  we 
can apply (2.27) and find that at  

71 = f((,c) = 0 + O(M-i) ,  aF/aX = M6[ - j v+  O(fM-*)] 

for X > 0;  whence 

(4.35) 

The second condition follows by symmetry. At the top wall 

8-(c,/8X = M @ j ,  + O(M-l)]; 

whence 71 = 1 : (a2/8X2 - 8/87)  Z0 = 0 for all S. (4.36) 
43 Fluid Mech. 33 
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Go = fcG0 for X > 0, 

Po = 0 for X < 0, 
7 = 0: (4.37) 

and 7 = 1: Eo = 0 for all 5. (4.38) 

Finally, the boundary conditions at X = & 00 are 

x’= -a:ii 0 - -  - ue, zo = Go = Jo = 0, (4.39a) 

since otherwise iJe would have to be O(M4) outside the layer, and 

X = + a : v o  = j, = 0. (4.39b) 

The above analysis clearly fails near X = 7 = 0 where there are sudden changes 
in the boundary conditions, but this makes no difference. In  general there is a 
small region of dimensions O(M-l) where 8/8[, 8/87 = O(M)  and in which the 
Hartmann-layer conditions are not valid. The governing equations are 

(4.40) 

when written in terms of the stretched co-ordinates 
The general solution of (4.34) for Go consists of two parts: a diffusion in the 

positive 7-direction, which satisfies the boundary condition (4.36) automatically, 
and a diffusion in the negative ?-direction, which this condition shows t o  be 
zero in our case. Taking into account the remaining boundary conditions we 

(4.41) 
therefore find 

[There are many solutions which satisfy the boundary conditions on Go in (4.39)) 
e.g. the X-derivatives of the function (4.41); but only the latter gives a change in 
Go through the layer. All such additional functions may be excluded for being too 
singular at X = 7 = 0.1 The solution for Go is 

= ME, Y = My.  

w0 = [h’(<)/2(7r7)4] exp ( - X2/47). 

Eo = 0, (4.42) 

since the Go in (4.37) is now seen to be zero. From these follow in succession 
- 
uo = &K’(<) erfc (X/2 , ,4 ) ,  so that h-‘ = U 

when the boundary conditions (4.39) are applied. 
The function K(<) is only determined to within an additive constant, since it 

is 2(., = K‘ which is supposed given (by the solution of the potential problem 
in the next section). With an arbitrary origin for 5 we may write 
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where g ranges from 0 to 1 around the circumscribing cylinder of the body. 
Since the shear layer is not a source or sink of fluid, 

k(1) = .,(")dC' = 0 1: -- 

and K is single valued. To fix c we appeal to the minimum dissipation theorem 
to be discussed in $5. The dissipation of energy (predominantly in region 3) 
is proportional to 

which is a minimum for 

The corresponding K is independent of the origin of [ and vanishes at  least twice. 
For a body symmetric about z = 0 ,  these zeros give the front and rear lines x = 0 
on the circumscribing cylinder. 
w1 and 'ul satisfy the same boundary conditions (4.35)-(4.38) as Wo and Go. To 

be sure, extra terms in Tio, Go, Wo and their derivatives do appear in equations 
(4.35), (4.37) for X > 0 (though not (4.36,) (4.38)), but we have just shown these 
to be zero. Conditions (4.39) also hold for the l-solution except that 

(4.44) ul=O and W 1 = W e  at  X =  -m 

now. The solution will not be written here, since it must be excluded for the reason 
given next. It is appropriate for a perfectly conducting body, so the formulas will 
be given there. 

The total current in a Hartmann layer is M-l times the velocity just outside, 
and is directed a t  right angles to the flow. Hence there is a current M-%, flowing 
into the top outside of the shear layer S with nowhere to go but vertically down 
the layer,? since W1 = 0. But having reached the bottom there is still nowhere 
to go, if we rule out the possibility of an intense equatorial current O(M@,) 
around the body. Such a current would induce a comparable velocity U, which is 
unacceptable to the governing equation (4.40) in region (3). We conclude that 

- 

- 

We = 0. (4.45) 

4.4. Completion of solution in C, 

The condition (4.45) reads 

aTpn = 0 on ~ ( x , x )  = 0 (4.46) 

in terms of the stream function $'(x,z) of the flow in C, (see end of $4.1).  The 
remaining condition is 

The streamlines are the force lines for a conducting cylinderf(x, x )  = 0 placed in 
a uniform electric field urn in the x-direction. 

There is no zero-order current in C, by hypothesis (h = 0) .  In  the Hartmann 
layers the current flows at  right angles to the streamlines, in the negative z- 
direction at both walls. 

t This result may be checked by integrating the j l l ,  of (4.51) across the layer. 

$' = u,z at large distances. (4.47) 

45-2 
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Velocity streamlines 

FIGURE 4. Strrainlines and current lines for flow over a non-conducting 
sphere when j, = O(&-1). 

---- -- 
/ / / / / / / / / / / / / / / / /  

FIGURE 5. -Flow in the shcar layer for a thick non-conducting body: current stream lines 
and graph of Eo at constant values of 7. 
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Figure 4 shows the streamlines and O(M-l) current lines for a non-conducting 
sphere. In  figure 5 we sketch the current lines of j, and a graph of w,, in the shear 
layer S. 

4.5. Shear layer for a highly conducting body 

As was pointed out in 54.3, our shear-layer analysis applies here even when there 
are O(1) currents in Ce. An O(1) term must be added tojg in the expansions (4.33). 
Not surprisingly it turns out to be independent of g. Similarly, terms independent 
of 6 may be added tojVo andj,. All this means is that any O(1) core current must 
be continuous across the layer, and does not affect its dynamics. However, 
(4.22) is so difficult to solve that we restrict attention to 

g = h = 0, i.e. v = j = 0 in Ci, (4.48) 

which implies zero O( 1) current in C,, the case of greatest practical interest. 
In  analysing the layer S the only change is the boundary condition on the body, 

where (2.28) must be used in place of (2 .27 ) ;  but the same solutions Wo and ii$ 
result. However, this time the currents for W1 can flow along the surface of the 
body when they reach the bottom of S ;  and an examination of region (3) shows 
that we must now take 

so that Go = 0. 

__ 
u, = 0 

The solution in the shear layer S is therefore 

w1 = $@,erfc ( 5 / 2 & 1 ) ,  
- - 

zil = 0; 
from which follow 

- dZe 
u1 = [J(r /n)  exp ( - X2/4T) - ( X / 2 )  erfc ( X / 2 4 r ) l ,  

(4.49) 

(4.50) 

5. Flow over a flat plate 
Consider a non-conducting flat plate of arbitrary shape x = C ( x )  located in the 

centre plane of the parallel-sided channel (figure 6). C, is now similar to Ce; in 
particular, there will be flow there also. The link between the two flows is pro- 
vided by the shear layer S ,  which we treat as before. 

If we consider the first-order, 1-solution we find that W1 =+ 0 since no singularity 
need appear in region (3). The explanation is that part of the current we/M goes 
through the top of the shear layer into the Hartmann layer between C, and the 
top wall; while the rest flows down the shear layer and out of the bottom into 
the Hartmann layer on top of the plate, as shown in figure 6. Since each of these 
Hartmann layers has a current G J M  flowing into it, we must have 

Tice = a@,. (5.1) 
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To the I-solution satisfying this condition (in place of Ci = 0) we may add a 
zero order, 0-solution effecting the jump from arbitrary a, to arbitrary Tii .  [In 
equation (4.43) K' is changed to U, - Ui and Gi is added.] All such solutions are 
acceptable to the region (3), so that we have a basic indeterminacy. 

t Bo 

FIGURE 6. Flow in the shear layer for a flat plate: current stream lines, showing how 
current enters and leaves the boimdary layers ( B )  via the shear layers (AT), and graph of 
w1 at constant values of 7. - 

A choice can be made on the basis of energy dissipation. If the 0-solution is not 
- -  
uo = u, = Tii, (5 .2 )  

circulating currents (figure 5 )  act in the shear layer to increase the dissipation; 
i.e. (5.2) provides minimum energy loss and hence may be expected on physical 
grounds. Support for this choice is provided by a general result on inertialess 
MHD flows due to Moffatt (but unpublished): amongst all flow and current fields 
satisfying boundary conditions and continuity, the solution is the one with least 
dissipation. (The corresponding hydrodynamic result, due to Helmholtz and 
Korteweg, appears in Lamb (1932).) If one has confidence in asymptotic methods, 
it  must be that all choices except (5.2) lead to contradictions (other than in 
boundary conditions and continuity) at  a later stage in the approximation. 

The 1-solution (4.50, 4.51) must be modified to accommodate the different 
condition (5.1). Thus 

- 

(5.3) 

u ' ~  = 3 [Z + erfc ( ~ / 2 ~ q ) l ,  

- I d % ,  
u1 = 

4 

[2(T/n-)&exp ( - X 2 / d q )  - X(2 + erfc Jq)}], 
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while We is replaced by QiZe injTl andjtl. Apart from uo only 

71 1 

are non-zero for the 0-solution. This is in accordance with the remarks at  the 
beginning of $4.5, which also allow an O(1) term to  be added inj5 provided it is 
constant across the layer. In  short, 

j, = ji. (5.4) 

FIGURE 7. Streamlines and current lines for flow over a non-conducting circular plate. 

The solution in C, and Ci is now easily completed. Conditions (5.1), (5.2) read 

(&++'/an), = 2(&h'/8n)i, 1C.L = I& at i: = C(z) (5.5) 

in terms of the stream function @'(x,x) .  (See end of 54.1 which now applies t o  
Ci also.) The remaining condition is 

$' = u,z at large distances. (5.6) 
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The streamlines are the induction lines for a cylinder z = C(x),  of permeability 
4 that of its surroundings, placed in a uniform magnetic field u, in the x-direction. 

Since the current is continuous across z = G(x) ,  whatever is applied uniformly 
at infinity will pass through undisturbed. 

5.1. Example : elliptical plute 

Consider an ellipitically shaped plate with semi-axes m, n parallel and perpen- 
dicular to the flow. The solution is 

(5.7) 
u = u,(l+$,), w = in C,, 

ic = uu,, w = 0 in Ci, 

where 

and 

( 5.7 a,) 

cosh sinh 
sinh cosh x = Im2-n21* Acosp, y = I , rn2-n21b Asinp (5 .7b )  

according as m 5 n. 
For this particular shape the flow in Ci, i.e. above and below the plate, is uni- 

form and parallel to the incident stream, but is reduced to a fraction a of that 
stream. As m/n increases from 0 through 1 (circle illustrated in figure 7) to 00, 

u decreases from 1 through $ to 4. 
These results are of great significance. When the plate is sufficiently short in 

the flow direction (m fixed, n+m) a two-dimensional description of the flow is 
accurate and the analysis of Dix (1963) is appropriate. When the plate is suffi- 
ciently long in the flow direction (m -+ CO, n fixed) the asymptotic state proposed 
by Hasimoto (1960) develops, with u = turn above and below the plate. 

6. Remarks and conclusions 
The methods used in $0 4,5, and described in some detail, will solve other three- 

dimensional flow problems. In  a future paper we shalI treat various kinds of 
diverging ducts. However, it is of interest here to make some remarks about flows 
over other kinds of body and in ducts whose walls are not parallel to each other. 

(i) Let an arbitrary, thick, non-conducting body (e.g. an ellipsoid with its 
axis at  an angle to the stream) be placed anywhere in a parallel-sided duct. 
Then v = 0 in Ci, as before, and the flow in C, is given by (4.46), (4.47), where 
f (x, x) = 0 is now the circumscribing cylinder of the body. 

(ii) If the duct is described by ZJ = f F ( x )  with P' + 0 ,  and a non-conducting 
body is placed in it, then v = 0 in Ci and the flow in C, is determined by S. 

(iii) 9 n  the other hand, if y = -t P(z) with P' + 0 ,  the flow in C, is determined, 
and we find v is not zero in Ci but is determined by S. The complete analysis of 
this problem is very complicated and we have not attempted it. 

(iv) In  the compIetely general case y = F(x ,  z ) ,  where aP/ax + 0 and U / a x  + 0, 
we have not even solved the duct flow problem by itself, let alone with a body in 
it. However, we can state that v is not necessarily zero in Ci, and that the flows 
in C, and Ci depend on each other and S. 
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One of the interesting results of our three-dimensional analysis is that it demon- 
strates under what circumstances a two-dimensional analysis is valid. This is 
connected with making the term ‘thick’ more precise, which we shall now do. 

Consider the flow over a non-conducting body of thickness t with length m in 
the x-direction and length n in the x-direction, placed in a parallel-sided duct. 
Then, whatever the ratios mln, the body will be thick and inhibit flow over itself 
when 

On the other hand, when 
both t /m and t /n  BN-l. (6.1) 

both t /m and t /n N N-l or smaller, (6.2) 

the body behaves like a flat plate (9  5). To see this, note that the only boundary 
conditions which were sensitive to the thickness of the body are (3.4): for a thin 
body (plate) they degenerate into the single condition Y = 0. When both the 
representative slopes t /m, t ln on the body are large compared to N-1 both Fz- and 
F,-terms appear and the thick-body analysis applies. In  case (6.2) these terms 
are relegated to the N-l-conditions and the flat-plate analysis is appropriate. 

The flow will become two-dimensional in the sense a/& = 0 as m/n -+ 0 when 

tin N N-I. (6.3) 

For then Fs drops out of (3.4) and the solution at  each section z = 2, is that of 
Hunt & Leibovich (1967) for plane flow between walls y = 1,  P(x, z,), the func- 
tion F varying slowly with 2,. However, the Hunt-Leibovich solution must be 
used with caution. It applies accurately to the more realistic case of a non- 
conducting cylinder which spans the duct in the x-direction from one conducting 
side wall to the other. But any bulging of the cylinder in the middle will produce 
closed contour lines, and the flow will be blocked. 

Similarly, the flow becomes two-dimensional in the sense a/ax = 0 as m/n+ 00 

when 
t /m N N-l .  

It follows that Hasirnoto’s (1960) analysis based on the assumption a/& = 0, can 
only describe flows over finite bodies for a particular range of N ,  namely, 
t /m N 8-1 < 1. (A similar remark applies to the Hunt-Leibovich analysis.) 

The results of $4 that, if the zero-order current is zero far from the body, there 
can be no flow over either a highly conducting or non-conducting body, should be 
compared with those of Ludford & Singh (1963). They examined unconfined flow 
over a sphere, assuming zero viscosity, N 9 1,  and R, arbitrary. In  order to 
render the steady solution determinate the transient problem was considered. 
They found the velocity over a non-conducting sphere to be 0 . 3 8 ~ ~  and over a 
perfectly conducting sphere to be zero. Different results were to be expected not 
only because one flow is confined and the other is not, but because the Hartmann 
layers, which we have shown to control the flow, were neglected by Ludford & 
Singh. 

We mentioned in 9 2 some of the similarities and differences in the equations for 
non-conducting flow in a rotating environment and our MHD flows. Later sec- 
tions show how these mathematical similarities lead to physical similarities. 
We saw in $ 3  how, when j, = 0, the flow follows lines of constant separation 

(6.4) 



7 14 J .  C. R. Hunt and G .  8. S .  Ludford 

D = (F, - 4). Exactly the same occurs in a rotating fluid because the length of 
vortex lines has to remain constant. In  $4.2 we saw how v = 0 in Ci for a non- 
conducting body; the flow must follow lines of constant f and viscosity necessi- 
tates such a flow being zero. Exactly the same analysis arises in rotating fluids 
in that, if we can show j, = 0, the Taylor-Proudman equation av/ay = 0 holds 
(see (2.11)); and that Hartmann layers play the same role as Ekman layers. 

This work was supported by the U.S. Army Research Office-Durham, 
North Carolina. 
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